USE DEPENDENT SOIL PROPERTIES: RESULTS FROM SOME STUDIES IN NJ & NYC

Richard K Shaw USDA-NRCS

Outline

Definitions

NJ matched pair study

NYC infiltration & land use study

Other related NRCS Projects

What's Next?

Use-dependent or management-dependent properties

Soil properties that show change and respond to use and management of the soil, such as soil organic matter levels and aggregate stability.

http://soils.usda.gov/sqi/concepts/glossary.html

Dynamic soil properties

Soil properties that change over the human time scale in response to anthropogenic (management, land use) and non-anthropogenic (natural disturbances and cycles) factors.
Many are important for characterizing soil functions and ecological processes and for predicting soil behavior on human time scales.

http://soils.usda.gov/sqi/concepts/glossary.html

Use-independent properties

Soil properties that show little change over time and are not affected by use and management of the soil, such as mineralogy * and particle size distribution.

http://soils.usda.gov/sqi/concepts/glossary.html

Use dependent properties

*Effects of Cultivation on Hydroxy-Interlayering of 2:1 Clay Minerals in Some New Jersey Soils

In some soils, vermiculite or smectite \rightarrow hydroxy-Al interlayered vermiculite or smectite

R.K. Shaw, 1994 Dissertation, Dept of Soils and Crops, Rutgers University

L.A. Douglas, Advisor H.L. Motto P.H. Hsu J.C.F. Tedrow J.R. Heckman

Soil Quality

soil quality or soil health - the capacity of the soil to function.

Two aspects of soil quality include:

dynamic soil quality - That aspect of soil quality relating to soil properties that change as a result of soil use and management or over the human time scale.

inherent soil quality - That aspect of soil quality relating to a soil's natural composition and properties as influenced by the factors and processes of soil formation, in the absence of human impacts.

NJ Matched Pair Study

1991 NRCS-NJ: Ron Taylor, Daryl Lund, Maxine Levin, Dave Kingsbury, Thornton Hole, Lenore Matula

Examine changes in soil properties upon cultivation. Full characterization at NSS Lab.

Matched pairs

Same series (prime farmland soils) under 2 land uses:

- a) Woodland not cropped <u>></u>50 yrs
- b) Cultivation continually cropped \geq 30 yrs

NJ Matched Pair Study

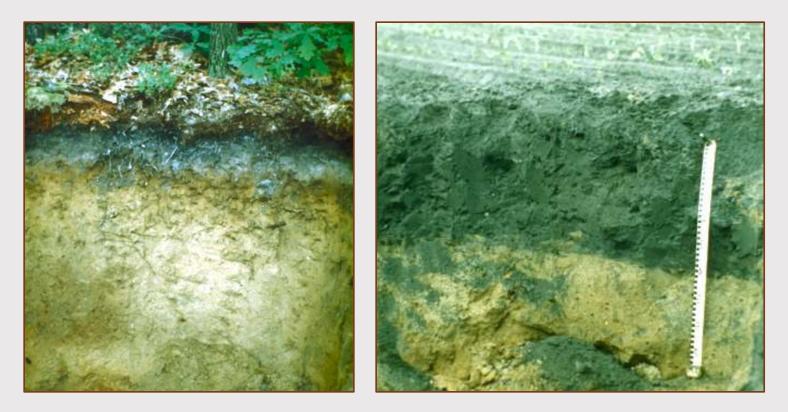
Bob Grossman, Research Soil Scientist

NSSC, Lincoln, NE

✓ Fragipan properties
 ✓ Desert soil project
 ✓ Soil Survey Manual
 ✓ Assessment methods
 soil physical properties

NJ Matched Pairs: 1991-present

32 pairs: same soil series in woodland & cultivation


144A & 140

Hazen* Delaware Lordstown* Bath (Wurtsboro)* Galway* Wassaic Chatfield Wurtsboro Albia (Venango) 148 Washington (2 pairs)* Gladstone* Berks* Penn* Ryder (Berks)* Quakertown*

149A & 153D

Freehold* Collington* Holmdel* Sassafras* **Keyport*** Chillum* **Mattapex** Westphalia* Aura* Lakewood Lakehurst **Evesboro** Klej

*included in statistical analyses

Downer matched pair, Buena, Atlantic County

1. Compare Soil Organic Carbon Density or Areal organic carbon to 1 meter depth

Sum (all horizons to 1 m):

% SOC x thickness x $Db = kg C / m^2$

2. Compare properties of selected horizons (3)
 Wooded Cultivated
 O 0 to 5 cm
 ✓ A 5 to 13 cm ← → Ap 0 to 27 cm
 AB, BA, 13 to 23 cm
 E or BE

 \checkmark Bt or Bw 23 to 45 cm \leftarrow \rightarrow Bt or Bw 27 to 45 cm

 \checkmark 100 cm depth \leftarrow \rightarrow 100 cm depth

Soil Organic Carbon Density to 1 meter depth

average values kg C / m²

<u>n</u>	<u>Wooded</u>	Cultivated	<u>t-value</u>
18	<u>14.53</u>	<u>6.98</u>	9.82***

Average loss upon cultivation = 52%

*** significant at .001 level

Areal Org. Carbon: Linear Regression

<u>regression</u>	<u>equation</u>	18 pairs	<u>r value</u>
Simple linear r	regression		
cult AOC =	0.348 wood AOC	+ 1.924	.6176
Stepwise multi	ple regression		
cult AOC = C	0.319 wood AOC	+ 0.023 %silt + 1.410	.6391
Simple linear re	egression		
AOC loss =	0.652 wood AOC	- 1.924	.8272
Stepwise multip	ple regression		
AOC loss =	.6807 wood AOC	- 0.023%silt - 1.410	.8355

Wooded vs Cultivated; A horizons

Variable	n	м	eans	t-value
		wood	<u>cult</u>	
% sand	19	45.91	47.33	-0.88
% silt	19	41.63	39.62	1.33
% clay	19	11.69	12.10	-0.86
% OC	19	<u>4.72</u>	<u>1.18</u>	4.31 ***
Db	17	<u>0.90</u>	<u>1.52</u>	-6.33 ***

*** significant at the .001 level

Wooded vs Cultivated; A horizons

Variable	n	М	eans	t-value
		wood	<u>cult</u>	
1/3 Bar H ₂ O	9	<u>29.36</u>	<u>19.67</u>	3.44 **
15 Bar H ₂ O	19	<u>11.17</u>	<u>6.02</u>	3.37 **
% AWC	9	<u>19.99</u>	<u>12.31</u>	3.02 *
% TPS	9	<u>56.40</u>	<u>45.49</u>	4.74 **
% AFP	9	<u>25.40</u>	<u>17.84</u>	2.91 *

** significant at the .01 level

*significant at the .05 level

Wooded vs Cultivated; A horizons

<u>Variable</u>	n	Μ	eans	t-value
		wood	<u>cult</u>	
CEC	19	<u>17.44</u>	<u>7.61</u>	4.54 ***
рН (Н ₂ О)	19	<u>4.49</u>	<u>5.92</u>	-6.19 ***
% Base Sat.	19	<u>36.37</u>	<u>80.22</u>	-4.68 ***
Kf	17	<u>0.26</u>	<u>0.35</u>	-6.20 ***

*** significant at the .001 level

Correlation Coefficients; A Horizons

$\frac{1/3 \text{ Bar } 15 \text{ Bar}}{\% \text{C} \text{ Db } \text{ H}_2 \text{O} \text{ H}_2 \text{O} \text{ PAWC } \text{TPS } \text{AFP}}$ $Db \quad -.747^{**} ---- \quad -.691^{**} -.651^{**} -.647^{**} \quad -.994^{**} \quad -.737^{**}$ $\% \text{C} \quad ---- \quad -.747^{**} \quad .528^{**} \quad .880^{**} \quad .440^{*} \quad .706^{**} \quad .518^{**}$

* significant at the .05 level** significant at the .01 level

Cult vs wooded; B horizons

<u>Variable</u> n		Me	ans	t-value
		wood	<u>cult</u>	
% sand	19	45.25	46.05	-0.51
% silt	19	38.83	36.39	1.29
% clay	19	16.25	17.61	-0.73
% OC	19	<u>0.47</u>	0.29	3.89 **
Db	17	<u>1.44</u>	<u>1.76</u>	-3.69**

** significant at the .01 level

Cult vs wooded; B horizons

Variable	n	Ι	Means	t-value
		wood	<u>cult</u>	
1/3 Bar H ₂ O	17	19.00	17.98	0.85
15 Bar H ₂ O	19	7.36	7.53	-0.22
% PAWC	17	11.44	10.28	0.97
% TPS	17	<u>45.69</u>	<u>41.23</u>	3.68 **
% AFP	17	<u>18.91</u>	<u>13.99</u>	3.56 **

**significant at the .01 level

Cult vs wooded; B horizons

<u>Variable</u>	n	Means		<u>t-value</u>
		wood	<u>cult</u>	
CEC	19	7.21	6.46	0.99
рН (Н ₂ О)	19	<u>4.85</u>	<u>5.97</u>	-5.02 ***
% Base Sat.	19	<u>26.58</u>	<u>72.21</u>	-5.32 ***

*** significant at the .001 level

Cult vs wooded; 100 cm depth

Variable	n	M	eans	t-value
		wood	<u>cult</u>	
% sand	15	53.36	60.44	-1.46
% silt	15	28.77	21.65	1.67
% clay	15	20.03	17.91	1.01
% OC	14	<u>0.13</u>	<u>0.08</u>	3.29 **
Db	11	1.59	1.61	-0.45

** significant at the .01 level

Cult vs wooded; 100 cm depth

Variable	n	Μ	eans	t-value
		wood	<u>cult</u>	
1/3 Bar H ₂ O	11	17.90	16.80	0.64
15 Bar H ₂ O	15	9.05	8.07	1.08
% PAWC	11	7.17	7.64	-0.47
% TPS	11	40.25	39.24	0.44
% AFP	11	13.43	12.74	0.35

Cult vs wooded; 100 cm depth

<u>Variable</u>	n	Means		<u>t-value</u>
		wood	<u>cult</u>	
CEC	15	7.59	5.99	1.53
рН (Н ₂ О)	15	<u>4.84</u>	<u>5.41</u>	-3.26 **
% Base Sat.	14	<u>23.29</u>	<u>51.43</u>	-4.68 ***

** significant at the .01 level *** significant at the .001 level

Effects on Soil Classification

- <u>n = 19 pairs</u>
- 2 from ultisol to alfisol

order

2 from dystrudept to eutrudept great group

2 from ultic hapludalf to typic subgroup

All from changes in base saturation

Implications

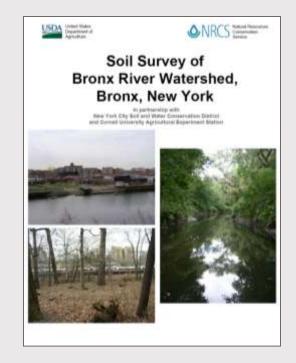
- Most soil survey map units cover different land use types, but list only one set of soil properties per component
- **Gladstone** series- residuum & colluvium from granitic gneiss 21% agriculture 47% woodland 31% urban
- Freehold series- low greensand inner coastal plain 23% agriculture 13% woodland 58% urban

NYC Infiltration & Land Use Study

Hydrologic Soil Group = most requested soil interpretation in NYC

- Based on soil properties:
 - Ksat

Depth to restrictive layer (20 to 40") or water table (24 to 40")


Traditionally assigned to a soil series

Bronx River Watershed Soil Survey

1:6000 scale, high intensity survey, ~7000 acres Minimum size delineation = 0.5 acre

Land use diversity

- Undisturbed woodlands
- O Low Use parkland (mugwort, very stony)
- High use parkland (lawn, non-stony)
- O Woodlawn Cemetery
- Residential areas

BRW Infiltration & Land Use Study

Cornell Sprinkle Infiltrometer Soundview Park - Low use area Soils: •Parent material: ✓ Fill (HTM) ✓ Natural Materials •Particle Size Class: ✓ Coarse-silty ✓ Coarse-loamy ✓ Loamy-skeletal ✓ Sandy

Land uses: •Woodland •Parkland ✓Low-use ✓High-use •Residential

Soil Series	Particle-Size Class	Landuse	<u>in/hr</u>
Chatfield	coarse-loamy	woodland	6.14
Charlton	coarse-loamy	woodland	6.61
Olinville*	coarse-loamy	woodland	7.32
Chatfield	coarse-loamy	woodland	7.56
Suncook	sandy	woodland	7.80
Deerfield	sandy	woodland	10.39

* formed in HTM (fill)

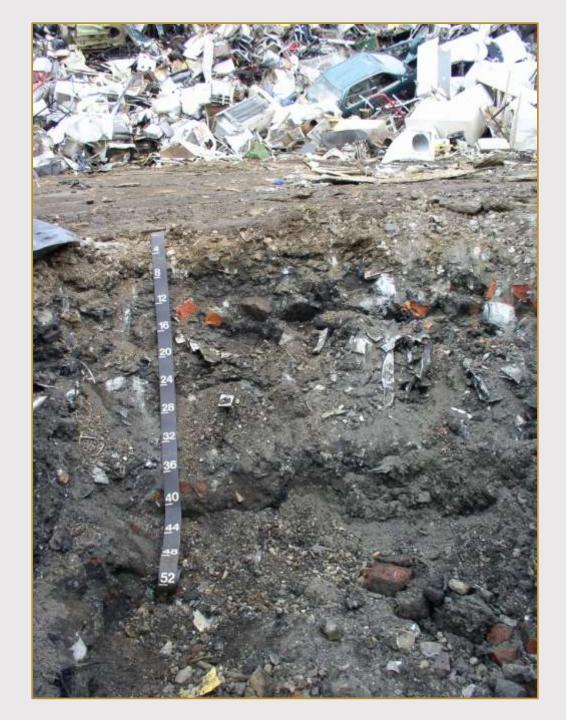
Soil Series	Particle-Size Class	Landuse	<u>in/hr</u>
Tonawanda	coarse-silty	city park (high use)	0.12
Laguardia*	loamy-skeletal	city park (high use)	0.24
Centralpark*	loamy-skeletal	city park (high use)	0.24
Centralpark*	loamy-skeletal	city park (high use)	0.47
Greenbelt *	coarse-loamy	city park (high use)	0.71

*formed in HTM (fill)

Soil Series	Particle-Size Class	Landuse	in/hr
Greenbelt*	coarse-loamy	low use parkland	3.78
Hollis	coarse-loamy	low use parkland	4.49
Laguardia*	loamy-skeletal	low use parkland	4.70
Suncook*	sandy	low use parkland	7.80
Laguardia*	loamy-skeletal	low use parkland	9.45

*formed in HTM (fill)

Soil Series	Particle-Size	Class L	anduse	<u>in/hr</u>
Centralpark	loamy-skeletal	residential	(back yard)	0.00
Greenbelt	coarse-loamy	residential	(tree pit)	0.00
Bigapple	sandy	residential	(vacant lot)	1.38
Greenbelt	coarse-loamy	residential	(landscaped)	2.36
Greenbelt	coarse-loamy	residential	l (landscaped)	2.60
Greenbelt	coarse-loamy	residential	(rain garden)	6.38


All soils formed in HTM (fill)

Soil Series	Particle-Size Class	Landuse	in/hr
Greenbelt	coarse-loamy	residential (tree pit)	0.00
Greenbelt	coarse-loamy	city park - high use	0.71
Greenbelt	coarse-loamy	residential (landscaping)	2.36
Greenbelt	coarse-loamy	residential (landscaping)	2.60
Greenbelt	coarse-loamy	city park – low use	3.78
Greenbelt	coarse-loamy	residential (rain garden)	6.38

Greenbelt soils are formed in HTM (fill)

Soil Series	Particle-Size Class	Landuse	<u>in/hr</u>
Laguardia	loamy-skeletal	industrial	0.00
Laguardia	loamy-skeletal	city park (high use)	0.24
Laguardia	loamy-skeletal	city park (high use)	0.71
Laguardia	loamy-skeletal	city park (low use)	4.70
Laguardia	loamy-skeletal	city park (low use)	9.45

Laguardia soils are formed in HTM (fill)

Laguardia series fill with construction debris loamy-skeletal industrial land use <u>0.00 in/hr infiltration</u>

Sims Hugo Neu Metal Recycling Hunts Point, Bronx Bronx River Watershed Soil Survey 1:6000 scale, high intensity survey

Our model:

Undisturbed woodlands

Low Use Parkland

Cemeteries

High use parkland & Industrial More foot traffic

Increase in Db

Decrease in Ksat

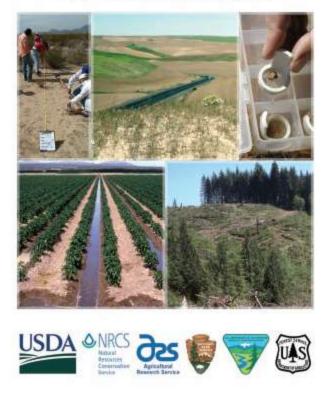
Decrease in infiltration rate

BRW use dependent map units, soil properties

	Surface <u>Db</u> g/cm ³	<u>Ksat</u> in/hr	<u>HSG</u>
Woodlands Charlton	0.9 - 1.47	0.6 to 7.14	В
Low use parkland Laguardia	0.9 - 1.65	0.6 to 6	В
Cemetery Greenbelt	0.9 – 1.65	0.6 to 3.6	В
High use parkland Laguardia	1.2 - 1.8	0.14 to <1.42	С

Other related NRCS projects

Soil Change Working Group (now Soil & Ecosystem Dynamics)


NRCS & other members

Mission areas

- Soil Quality
- Dynamic Soil Properties
- ✓ Ecological Site Index

Soil Change Guide

SOIL CHANGE GUIDE: PROCEDURES FOR SOIL SURVEY AND RESOURCE INVENTORY

This Guide is designed for soil survey, vegetation, and ecological site or unit inventory work in order to help soil scientists and other inventory specialists collect interpretable data about soil change within the human time scale. This Guide describes a sampling system to measure dynamic soil properties for all major land uses (except urban lands where the land and soil have been significantly reshaped).

Rapid Carbon Assessment

- A comprehensive inventory of soil carbon stocks for soils of the U.S. <u>as affected by</u> soil properties, agricultural management, ecosystems, and <u>land uses</u>.
- Enhanced carbon data are needed for evaluating the effects of conservation practices on soil carbon and for <u>global carbon</u> <u>accounting.</u>

Soil Survey Division Program Plan 2011-2015

#4 of 17 items.

Collect dynamic soil properties and other pertinent features focusing on benchmark soils, landscapes and ecological sites.

What's missing?

<u>Use dependent data base would:</u>

- Allow users to select more applicable data
- Increase accuracy of interpretations
- Enable an evaluation of soil quality
- Provide more accurate information about the state of the land

from Aspects of a Use- Dependent Data Base

By Robert B. Grossman and Jim R. Fortner, NSSC, Lincoln, NE. NCSS Newsletter, October1999

Differences in soil properties from land use can be significant

In some cases may affect interpretations

Use dependent map units may be an option, depending on mapping scale, and extent of land use changes

A database that can accommodate use dependent properties would be more flexible

"Me future is settled, Willie. I'm gonna be a perfessor on types o' European soil."

Bill Mauldin